Cloudmesh Workflow Documentation
Release 0.1.2-1457030360-944db997

Badi’ Abdul-Wahid

March 03, 2016

Contents

1 workflow package 3
1.1 Usage SUMmMAry o v vt v e e e e e e e e e e e e e e e 3

1.2 DesCrIPtion v v v v e 3

L3 USAZe .« . v v o e e e e e e e e e e e 4

1.4 Cloudmesh Workflow Example 4

1.5 Concepts o o o e e e e e e e e e 5
1.5.1 Deferring function evaluation L e 5

1.5.2 Composing Nodes for parallel/sequential semantics 5

1.5.3 Evaluation of adelayed function 5

L6 APL . . . 5

2 Indices and tables 1
Python Module Index 13

Cloudmesh Workflow Documentation, Release 0.1.2-1457030360-944db997

Contents:

Contents 1

Cloudmesh Workflow Documentation, Release 0.1.2-1457030360-944db997

2 Contents

CHAPTER 1

workflow package

1.1 Usage Summary

1. Define delayed functions:

>>> @delayed()

. def A(foo):
time.sleep(0.05)
. print foo
>>>
>>> (@delayed()

. def B():
ce print 'Boo!'
>>>
>>> @delayed ()

. def C(x, vy):

return x **x y

2. Compose the functions using | and & for parallel and sequential evaluation:

>>> root_node = (A('hello world!") | B()) & C(4, 2)
>>> root_node
<cloudmesh_workflow.workflow.AndNode object at ...>

3. Evaluate the resulting graph

>>> evaluate (root_node.graph)
Boo!
hello world!

1.2 Description

This module provides an api for building a workflow graph of labeled functions which can then be evaluated. Nodes
connected with a desired ordering or run sequentially, others can be run in parallel.

Syntax is inspired by the parallel (Il) and sequential (;) operators. For example:

(A |1 B) ; (C 1] D)

means that A and B can be evaluated in parallel, and likewise C and D, but both A and B must be completed before C
or D may begin.

Cloudmesh Workflow Documentation, Release 0.1.2-1457030360-944db997

The python implementation overrides the bitwise OR (I) and AND (&) operators to provide a similar syntactic feel.

The example above should be defined as such:

Note: The python operator precedence for | and & is unchanged: & has higher precedence than |.

1.3 Usage

The first part is to mark top-level functions as delayed (). The @delayed () decoration wraps the function so
that calling the function inserts the Node, without applying the parameters, into the call Graph. You can access the

graph property of any node to get the current call graph.

For example, define two delayed functions A and B:

>>> (@delayed()
. def A(x):
return xx2

>>> (@delayed()
. def B(x, vy):
return x *x y

Compose A and B to run in parallel

‘>>> node = A(24) | B(40, 2)

Evaluate the graph:

’>>> evaluate (node.graph)

Print the results:

>>> for _, data in node.graph.nodes (data=True) :
n = datal['node']
print n.name, n.result.result ()

| None

A 48

B 1600

1.4 Cloudmesh Workflow Example

Warning: This is a proposed usage example and hasn’t been tested yet.

from cloudmesh base import Shell
from workflow import delayed, evaluate

@delayed()

def FutureSystems():
"Start a VM on FutureSystems OpenStack Kilo"
Shell.cm('boot', 'kilo')

4 Chapter 1.

workflow package

Cloudmesh Workflow Documentation, Release 0.1.2-1457030360-944db997

@delayed()

def Cybera(x, Vy):
"Start a VM on Cybera cloud"
Shell.cm('boot', 'cybera')

@delayed()

def Rackspace () :
"Start a VM on Rackspace"
Shell.cm('boot', 'rackspace')

def main () :
"Boot machines in parallel"
node = FutureSystems() | Cybera() | Rackspace()
evaluate (node.graph)

1.5 Concepts

1.5.1 Deferring function evaluation
A delayed is intended to be used as a decorator to lift arbitrary functions to have delayed semantics. Evaluation
semantics of delayed objects is:

1. calling a delayed function stores the arguments and returns a Node.

2. Nodes are composed using bitwise & and | operators to denote sequential and parallel evaluation order, respec-
tively.

1.5.2 Composing Nodes for parallel/sequential semantics

A Node captures the evaluation state of a de 1ayed function. It provides several important attributes:
1. graph: the evaluation graph in which the function is located.
2. f: the function to evaluate.
3. name: the name of the node. Typically captured from £, but may be a shorthand representation of OpNode.
4. result: the status and result of the evaluation.

Nodes are created by calling de 1 ayed functions and then composed using & and | . Each composition returns a new
Node in the graph.

1.5.3 Evaluation of a delayed function

Once Nodes have been composed to achieve the desired parallelism, evaluate the graph by calling evaluate () on
the graph attribute of the composed node.

1.6 API

class cloudmesh_workflow.workflow.delayed (graph=None, **kws)
Bases: object

A delayed is a decorator that delays evaluation of a function until explicitly called for using evaluate ().

1.5. Concepts 5

https://docs.python.org/library/functions.html#object

Cloudmesh Workflow Documentation, Release 0.1.2-1457030360-944db997

Intended usage: decorate a function such that __call__ () ing it returns a Node instance that can be com-
bined with other Node instances using the bitwise __and__ () (&)and __or__ () (|) operators to create a
workflow.
Example:

>>> (@delayed()
def foo(xargs):
for a in args:
.. print a
>>> type (foo)
<type 'function'>

>>> node = foo(l, 2) & foo (3, 4)

>>> print node

<cloudmesh_workflow.workflow.AndNode object at ...>
>>> evaluate (node.graph)

1

2

3

4

kws will be passed to the Node constructor.

Parameters graph (Graph or None) — If graph not None, this explicitly specifies the graph
into which the Node will be inserted.

cloudmesh_workflow.workflow.evaluate (Graph) — None
Graph ->10 ()

Starting from the root node, evaluate the branches. The graph nodes are updated in-place.

Example:

>>> (@delayed()

def foo(a):
return a
>>> node = foo(42) & foo(24)
>>> print evaluate (node.graph)
None
>>> for _, data in node.graph.nodes (data=True) :
n = data['node']
print n.name, n.result.result ()
& None
foo 42
foo 24

class cloudmesh_workflow.workflow.Node (f_args_kws, graph=None, executor=None, time-

out=None)
Bases: traits.has_traits.HasTraits

A node in the Graph and associated state.

Nodes can be composed using bitwise __and__ () and __or___ () operators to denote sequential or parallel
evaluation order, respectively.

For example, give A, B, and C functions that have been lifted to a Node type (eg through the de 1 a yed decorator
@delayed()), to evaluate A and B in parallel, then C:

G = ((A (argAO, argAl) | B()) & C(argC)) .graph

will create the call Graph G. In order to evaluate G:

6 Chapter 1. workflow package

https://docs.python.org/reference/datamodel.html#object.__call__
https://docs.python.org/reference/datamodel.html#object.__and__
https://docs.python.org/reference/datamodel.html#object.__or__
https://docs.python.org/reference/datamodel.html#object.__and__
https://docs.python.org/reference/datamodel.html#object.__or__

Cloudmesh Workflow Documentation, Release 0.1.2-1457030360-944db997

evaluate (G)

Create a Node to evaluate a function f in some graph using a given executor
Parameters

* func-f args kws = (f, args, kws) a 3-tuple of the function to evaluate (any callable) along
with positional and keywork arguments.

* graph — The Graph in which to insert the node upon composition with others. A value
of None will create a new graph. When composed with another node in a different
Node.graph () the two graphs with be merged.

* executor —a futures.Executor instance
¢ timeout — seconds (float or int) to wait.

children
[Node]

The children of this node. See Node.children iter ()
Return type list of Node

children_iter
Generator of Nodes

This yield‘s all the children Nodes of this node.
Returns Child nodes of this node.
Return type generator of Node

compose (other, callable(graph=Graph)) — OpNode
Compose this Node with another Node.

Two Nodes are composed using a proxy OpNode. The OpNode defines the evaluation semantics of its
child nodes (eg sequantial or parallel).

Parameters

* other —a Node

* MkOpNode — a callable with keyword arg graph constructor for the proxy node
Returns A new Node with self and other and children.
Return type Node

eval () — None
Start and wait for a node.

start () — None
Start evaluating this node

Start evaluating this nodes function self. £ if it hasn’t already started.

wait () — None
Wait for this node to finish evaluating

This may timeout if t imeout is specified.

class cloudmesh_workflow.workflow.OpNode (**kwargs)
Bases: cloudmesh_workflow.workflow.Node

A proxy node defining the evaluation semantics of its children Nodes

1.6. API 7

Cloudmesh Workflow Documentation, Release 0.1.2-1457030360-944db997

Intended usage: this class it not intended to be instantiated directly. Rather, classes should inherit from OpNode
to defined the desired semantics.

class cloudmesh_workflow.workflow.AndNode (**kwargs)
Bases: cloudmesh workflow.workflow.OpNode

Sequential evaluation semantics.
Children of AndNode will be evaluated in the order in which they were added as children of this node.

Example:

>>> (@delayed()

def foo(a): return 42
>>> foo (42) & foo(24)
<cloudmesh_workflow.workflow.AndNode object at ...>

start ()
wait ()

class cloudmesh_workflow.workflow.OrNode (**kwargs)
Bases: cloudmesh_workflow.workflow.OpNode

Parallel evaluation semantics

Children of OrNode will be evaluated in parallel, sparked in the order in which they were added as children of
this node.

Example:

>>> (@delayed()
def foo(a): return 42

>>> foo(42) | foo(24)
<cloudmesh_workflow.workflow.OrNode object at ...>
start ()

wait ()

class cloudmesh_workflow.workflow.Graph (data=None, **attr)
Bases: networkx.classes.digraph.DiGraph

A NetworkX networkx.DiGraph () where the ordering of edges/nodes is preserved
Initialize a graph with edges, name, graph attributes.

data [input graph] Data to initialize graph. If data=None (default) an empty graph is created. The data can be
an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed
the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

name [string, optional (default="")] An optional name for the graph.

attr [keyword arguments, optional (default= no attributes)] Attributes to add to graph as key=value pairs.

convert

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph (name="'my graph')

>>> e = [(1,2),(2,3),(3,4)] # 1ist of edges

>>> G = nx.Graph(e)

Arbitrary graph attribute pairs (key=value) may be assigned

8 Chapter 1. workflow package

https://networkx.github.io/documentation/latest/reference/classes.digraph.html#networkx.DiGraph

Cloudmesh Workflow Documentation, Release 0.1.2-1457030360-944db997

>>> G=nx.Graph (e, day="Friday")
>>> G.graph
{'day': 'Friday'}

adjlist_dict_factory
alias of OrderedDict

node_dict_factory
alias of OrderedDict

cloudmesh_workflow.workflow.find root_node (Graph) — Node
Graph -> Node

Find the root node of a connected DAG
Return type Node

Example:

>>> Q@delayed()

def foo(a):

return a

>>> node = foo(42) | foo(24)
>>> print node.name
|
>>> print find_root_node (node.graph) .name
|

1.6. API 9

Cloudmesh Workflow Documentation, Release 0.1.2-1457030360-944db997

10 Chapter 1. workflow package

CHAPTER 2

Indices and tables

¢ genindex
* modindex

e search

11

Cloudmesh Workflow Documentation, Release 0.1.2-1457030360-944db997

12 Chapter 2. Indices and tables

Python Module Index

C

cloudmesh_workflow.workflow, 3

13

Cloudmesh Workflow Documentation, Release 0.1.2-1457030360-944db997

14 Python Module Index

Index

A start() (cloudmesh_workflow.workflow.Node method), 7

adjlist_dict_factory (cloudmesh_workflow.workflow.Graph start() (cloudmesh_workflow.workflow.OrNode method),
attribute), 9
AndNode (class in cloudmesh_workflow.workflow), 8 W

C wait() (cloudmesh_workflow.workflow.AndNode

children (cloudmesh_workflow.workflow.Node attribute), _ method), 8
7 wait() (cloudmesh_workflow.workflow.Node method), 7

children_iter (cloudmesh_workflow.workflow.Node at- Wait() (cloudmesh_workflow.workflow.OrNode method),

tribute), 7 8
cloudmesh_workflow.workflow (module), 3
compose() (cloudmesh_workflow.workflow.Node

method), 7

D

delayed (class in cloudmesh_workflow.workflow), 5

E

eval() (cloudmesh_workflow.workflow.Node method), 7
evaluate() (in module cloudmesh_workflow.workflow), 6

F

find_root_node() (in module
cloudmesh_workflow.workflow), 9

G

Graph (class in cloudmesh_workflow.workflow), 8

N

Node (class in cloudmesh_workflow.workflow), 6
node_dict_factory (cloudmesh_workflow.workflow.Graph
attribute), 9

O

OpNode (class in cloudmesh_workflow.workflow), 7
OrNode (class in cloudmesh_workflow.workflow), 8

S

start() (cloudmesh_workflow.workflow. AndNode
method), 8

15

	workflow package
	Usage Summary
	Description
	Usage
	Cloudmesh Workflow Example
	Concepts
	Deferring function evaluation
	Composing Nodes for parallel/sequential semantics
	Evaluation of a delayed function

	API

	Indices and tables
	Python Module Index

